skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Suyong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Identifying the optimal formulation of emerging inorganic lead halide perovskite quantum dots (LHP QDs) with their vast colloidal synthesis universe and multiple synthesis/postsynthesis processing parameters is a challenging undertaking for material‐ and time‐intensive, batch synthesis strategies. Herein, a modular microfluidic synthesis strategy, integrated with an artificial intelligence (AI)‐guided decision‐making agent for intelligent navigation through the complex colloidal synthesis universe of LHP QDs with 10 individually controlled synthesis parameters and an accessible parameter space exceeding 2 × 107, is introduced. Utilizing the developed autonomous microfluidic experimentation strategy within a global learning framework, the optimal formulation of LHP QDs is rapidly identified through a two‐step colloidal synthesis and postsynthesis halide exchange reaction, for 10 different emission colors in less than 40 min per desired peak emission energy. Using two in‐series microfluidic reactors enables continuous bandgap engineering of LHP QDs via in‐line halide exchange reactions without the need for an intermediate washing step. Using an inert gas within a three‐phase flow format enables successful, self‐synchronized continuous delivery of halide salt precursor into moving droplets containing LHP QDs, resulting in accelerated closed‐loop formulation optimization and end‐to‐end continuous manufacturing of LHP QDs with desired optoelectronic properties. 
    more » « less
  3. Abstract The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy. 
    more » « less